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Detection of cell death (TUNEL)

Sections were labelled for apoptotic cell death 
using the terminal deoxynucleotidyl transfer-
ase dUTP nick end labelling (TUNEL) technique 
[44], following protocols published previously 
[3]. To demonstrate cellular layers, sections 
were also labelled with the DNA-specific dye 
bisbenzimide (Calbiochem, La Jolla, CA), by 
incubating them for 2 min in a 1:10,000 solu-
tion in 0.1 M PBS. Sections cut adjacent to or 
through the optic nerve head were chosen, to 
minimise variations in retinal length and posi-
tion. Counts of TUNEL+ profiles (apoptotic cells) 
were made using a calibrated 20 x objective 
and an eyepiece graticule. Each section was 
scanned from the superior to inferior edge, and 
the number of TUNEL+ profiles was recorded for 
each 400 µm length of the section. Counts 
were averaged from at least four sections per 
animal and were recorded separately for the 
outer nuclear layer (ONL) and inner nuclear 
layer (INL).

Measurement of photoreceptor survival (ONL/
retina ratio)

The thickness of the outer nuclear layer (ONL) 
and of the retina (from inner to outer limiting 
membranes) was measured at 400 µm inter-
vals from the superior to the inferior edge of the 

retina. The ratio of ONL to retinal thickness was 
used as a measure of ONL thickness; the use of 
the ratio was adopted to compensate for 
oblique sectioning. Measurements were made 
in two sections from one eye of each animal.

Immunohistochemistry for GFAP

Retinal sections were washed in 0.1 M PBS (3 x 
5 min), and then incubated in 10% normal goat 
serum in 0.1 M PBS for 1 hour at room tem-
perature to block non-specific binding. Sections 
were then incubated overnight at 4°C in rabbit 
polyclonal anti-GFAP (1:700; Dako Cytomation, 
Campbellfield, Australia). After three 10 min 
rinses in PBS, sections were incubated with an 
appropriate secondary antibody (1:1000 ALEXA 
Fluor 594, Molecular Probes, Invitrogen 
Carlsbad, CA), for 1 hour at room temperature 
or overnight at 4°C, before being coverslipped 
with glycerol–gelatin.

Assessment of GFAP expression: It is long 
established that the intermediate filament pro-
tein GFAP is expressed by astrocytes in retina 
and brain [45], but is expressed at much lower 
levels by Müller cells, particularly where the 
retina is unstressed, for example where its 
exposure to light is minimized [39, 46]. All forms 
of stress examined (ambient light [39], intense 
focused light [47], hypoxia [39], genetically-

Figure 1. Representative retinal sections, labelled with bisbenzimide, for nuclear DNA. gcl – ganglion cell layer, inl – 
inner nuclear layer, onl – outer nuclear layer. All images are from the light-vulnerable region of retina, superior to the 
optic disc. A: Control retina. B: Light damaged retina – the ONL is thinned. C, E, G, I: Retinas exposed to damaging 
light after preconditioning with PBM for 2, 5, 7 and 10 d. D, F, H: Retinas exposed to damaging light after precondi-
tioning with dietary saffron for 2, 5 and 10 d.
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induced stress [46, 48], mechanical injury [49, 
50], edge-related stress [51], and ischaemia 
[52]) upregulate GFAP expression by Müller 
cells. We noted that, when GFAP expression is 
upregulated, the expression spreads from the 
inner to the outer feet of the Müller cells so that 
the length of Müller cell along which expression 
can be detected increases with stress. We 
therefore measured the length of Müller cells 
showing GFAP expression, normalizing the 
measure as a proportion of the thickness of the 
retina (the distance from the inner to the outer 
limiting membrane).

Statistical tests

The significance of differences in the frequency 
of TUNEL+ cells, ONL thickness and GFAP label-

ling associated with conditioning time were 
assessed using both ANOVA, followed by a 
Tukey test. The Tukey test was used for all pair-
wise comparisons of the mean responses of 
the different treatment groups. The ANOVA out-
comes are indicated in Figures 2, 3 and 5.

Results

Measures of neuroprotection

Three measures of neuroprotection were used, 
the surviving population of photoreceptors, the 
rate of photoreceptor death, and the expres-
sion of the stress-inducible protein GFAP in 
Müller cells. All were assessed 1w after expo-
sure to damaging light.

Figure 2. Impact of conditioning on the thickness of the ONL. A, B: Thickness of the ONL as a function of distance 
from superior to inferior edge of the retina. Data are shown for control and light-damaged groups, and for groups 
preconditioned with PBM for 2, 5, 7 and 10 d (A), or with dietary saffron for 2, 5 and 10 d (B). The thinning of the 
ONL is more marked in the sensitive region of superior retina and is reduced by conditioning. C: Summary graph, 
for values averaged over superior retina. The thickness of the ONL after light damage tended to increase with the 
period of conditioning. The increase was significant after 7 d conditioning with PBM and 5 d with saffron. After 7 d 
conditioning with PBM and 10 d conditioning with saffron, the greater thickness of ONL (compared to unconditioned 
light damage group) was statistically significant. One asterisk indicates P < 0.05; two indicate P < 0.01. The error 
bars show standard errors.
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Increased photoreceptor survival: The survival 
of photoreceptors was examined as the thick-
ness of the ONL. Light damage reduced the 
thickness of the ONL, causing loss of and dam-
age to many cells in that layer, i.e. to photore-
ceptors (compare Figure 1A, 1B). When the 
animal was preconditioned with PBM, the loss 
of neurones from the ONL was mitigated in a 
progressive way (Figure 1C, 1E, 1G, 1I). When 
the animal was preconditioned with dietary saf-
fron for 2, 5 and 10 days, again the thinning of 
the ONL was mitigated (Figure 1D, 1F, 1H).

To quantify this effect, ONL thickness was 
recorded as a proportion of the thickness of 
the retina, measured from the ILM to the OLM, 
formed by the ONL. In the control (unstressed, 
unconditioned) retina, the thickness of the ONL 
was between 0.3 and 0.4, across the retina 

(control, Figure 2A, 2B). Exposure to damaging 
light caused a thinning of the ONL, most mark-
edly in the superior retina where, approximately 
3 mm from the superior edge, the layer was 
reduced to a localised minimum of 0.15. This 
localised region of sensitivity to bright light has 
been described in earlier studies [5, 39]. 
Preconditioning with PBM (Figure 2A) or with 
saffron (Figure 2B) was associated with 
reduced thinning of the ONL in superior retina.

The graph in Figure 2C shows the thickness of 
the ONL, averaged over superior retina, as a 
function of days preconditioning, with PBM or 
saffron. Compared to the light damage control, 
the ONL was significantly thicker after 7 d pre-
conditioning with PBM, and after 5 d precondi-
tioning with saffron.

Figure 3. Impact of conditioning on photoreceptor death, assessed by TUNEL-labelling of photoreceptors, 7 d after 
light damage. A: TUNEL-labelling in the ONL as a function of distance from the superior to the inferior edge of the 
retina, for control and light-damaged groups, and for groups preconditioned with PBM for 2, 5, 7 and 10 d. B: TUNEL-
labelling in the ONL as a function of distance from the superior to the inferior edge of the retina, for control and 
light-damaged groups, and for groups preconditioned with dietary saffron for 2, 5 and 10 d. C: Summary diagram, 
averaging labelling over superior retina. The reductions in labelling were statistically significant for 7 d and 10 d PBM 
conditioning, and for 2, 5 and 10 d saffron conditioning. The asterisks indicate points at which the TUNEL count was 
significantly less than in the unconditioned, light-damaged retina; one asterisk indicates P < 0.05; two indicate P < 
0.01; three indicate P < 0.005. The error bars show standard errors.
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Reduced rate of photoreceptor death: The con-
verse of photoreceptor survival is photorecep-
tor death. The rate of photoreceptor death in 
the control retina (dim-reared, not exposed to 
bright light, unconditioned by saffron or PBM) 
was very low (‘control’ in Figure 3A, 3B). 
Exposure to damaging light increased the count 
of TUNEL+ cells, most prominently in superior 
retina (light damaged, in Figure 3A, 3B). When 
the retina was preconditioned with 2, 5, 7 and 
10 d PBM, or with 2 d, 5 d and 10 d saffron, the 
TUNEL count in superior retina was reduced. 
Because, in the current experiments, retinas 
were examined 1w after the bright light expo-
sure that induced cell death, the numbers of 
TUNEL+ profiles were lower than in earlier stud-
ies (for example [39]), in which the retina was 
examined immediately after the damaging light 
exposure.

The graph in Figure 3C shows the variation in 
the frequency of TUNEL+ cells, average over the 
two positions (2 mm, 3 mm) sampled within 
superior retina, as a function of the period of 
preconditioning. For PBM, a reduction in cell 
death was detectable at 5 d and reached sta-
tistical significance at 7 and 10 d. For saffron, a 
reduction was evident and significant at 2 d 
and 5 d, and was increased at 10 d.

Reduced upregulation of GFAP: The impact of 
preconditioning by saffron and PBM on retinal 
stress is illustrated in Figures 4 and 5 using 
GFAP expression in Müller cells as a marker of 
stress. In the unstressed retina, GFAP expres-
sion is prominent in astrocytes, at the inner sur-
face of the retina, but not in Müller cells (Figure 
4A). The image in Figure 4A is from mid-periph-
eral retina, away from the anterior and disc 
edges of the retina, at which an edge-related 
stress upregulates photoreceptor death and 
GFAP expression in Müller cells [51, 53, 54].

In the light- damaged retina, GFAP expression is 
evident along the full length of Müller cell pro-
cesses, from the ILM to the OLM (Figure 4B). 
This full-length upregulation was apparent 
throughout the retina, not just at the light-sen-
sitive region of superior retina. After PBM and 
saffron preconditioning, some expression of 
GFAP in Müller cells is evident, but it is limited 
to the inner ends of the Müller cell processes 
(Figure 4C, 4D). That is, preconditioning limited 
the upregulation of GFAP in Müller cells; this 
limiting effect also was evident throughout the 
retina. Figure 4E shows how the length of 
Müller cell expressing GFAP was recorded – as 
the length of Müller cell labelled for GFAP (X), 

Figure 4. The measurement of GFAP labelling in Müller cells. All images were from inferior retina, where the ONL 
was not significantly thinned by the damaging light, but the expression of GFAP was nevertheless regulated. A: GFAP 
labelling in control (unstressed) retina was limited to astrocytes at the inner surface; these extended deep from the 
inner surface only along blood vessels (v). B: In the light-damaged retina, GFAP was strongly expressed in Müller 
cells from the inner surface to the outer limiting membrane (olm and double headed arrows in A-D). C, D: Condition-
ing with saffron or PBM reduced the extent of the labelling. We recorded the length of labelling as the ratio of the 
length of labelling along Müller cells normalized to retinal thickness (so X/Y in E).
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divided by the thickness of the retina from ILM 
to OLM (Y).

The results are summarised in Figure 5, and 
confirm the recent observation [48] that PBM 
reduces the upregulation of GFAP in Müller 
cells of mouse retina degenerating consequent 
to a complement factor knockout. In the control 
(unstressed, unconditioned) retina, GFAP was 
found only at the inner surface, in astrocytes, 
extending ~ 1/10th of the distance from the ILM 
to the OLM (control in A, B). In the light-stressed 
but unconditioned retina, GFAP expression 
extended 90% or more of that distance (light 
damaged in A, B). Preconditioning with PBM (A) 
or with saffron (B) reduced the length of expres-
sion to intermediate values. Figure 5C shows 
the dose-related reduction in GFAP upregula-
tion, averaged across the length of the retinal 
section. The reduction was statistically signifi-
cant for PBM at 5 d, 7d and 10 d, and for saf-
fron at 5 d and 10 d.

Discussion

Present data indicate that saffron and PBM, 
given daily in doses, protect retinal photorecep-
tors, the protection increasing with the number 

of days of treatment, up to 7-10 d. The findings 
raise issues of toxicity, daily dose, mechanism 
and therapeutic implications.

Toxicity

Saffron has been used for millenia as a spice 
and traditional medicine, and is generally 
regarded as non-toxic. Correspondingly, the 
peer-reviewed literature on saffron (> 300 stud-
ies and reviews since 1990) gives little evi-
dence of toxicity, and some compendia of toxic 
plants [55-57] make no mention of saffron. 
Nevertheless, saffron, like all plants, is toxic if 
ingested in sufficient quantities. LD50 levels 
have been reported (> 600 mg/kg [58]; 20.7 g/
kg [59]) for rodents and toxicity (intestinal 
bleeding) has been reported in humans [60] at 
5 g/day. These levels are much greater than 
neuroprotective doses (below), giving a large 
margin of safety. In the one safety trial of saf-
fron in humans [61] that we identified, no clini-
cally significant ill effects were reported for 
doses of up to 400 mg/d for 7 d.

For PBM, also known as NIR (near-infrared radi-
ation) or LLLT (low level laser/light therapy), we 

Figure 5. The impact of conditioning on GFAP la-
belling in Müller cells. This response to stress was 
distinct from photoreceptor apoptosis and survival 
in being fairly constant across the retina. Error bars 
represent standard errors. A: Labelling of Müller cells 
was least in control retinas and greatest in uncondi-
tioned light damaged retina. Preconditioning by PBM 
for 2, 5, 7 and 10 d progressively reduced the length 
of Müller cell which labelled for GFAP. B: Precondi-
tioning with dietary saffron fro 2, 5 and 10 d also re-
duced the length of Müller cell that labelled for GFAP. 
C: A summary graph, for each of the 2 experimen-
tal groups. The reduction in length labelled reached 
statistical significance (P < 0.001) at 5 d and 10 d 
preconditioning with saffron and at 5 d, 7 d and 10 d 
preconditioning with PBM.
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have been unable to find reports of tissue dam-
age or morbidity. Doses higher than the daily 
levels recommended by the World Association 
of Laser Therapy [62] have been explored, 
showing a loss of effectiveness (hormesis, 
below), but no toxicity.

This relative freedom from toxicity makes saf-
fron and PBM distinctive as neuroprotectants, 
as many stimuli for neuroprotection (exercise 
[28], phytotoxins [29, 63, 64] gamma rays [14, 
65] caloric restriction [30] or conditioning by 
heat [66], light [7, 9], hypoxia [67] and mechani-
cal injury [49]) are stressful, or directly 
damaging.

Establishing an effective dose

For neuroprotectants such as saffron and PBM, 
whose mechanisms are not well established, 
the effective dose has been determined empiri-
cally. For PBM, the basis for choice is extensive 
[42, 68] and has been codified [62]. In their 
meta-analysis, Tumilty and colleagues [68] con-
clude that the failure of 13 of the 25 trials of 
PBM in treating tendinopathy resulted from the 
use of intensities outside the range recom-
mended by the World Association on Laser 
Therapy [62]. The daily dose used in this study 
lies within, and towards the low end of that 
range. High doses are associated with a 
reduced effect (the ‘biphasic’ response dis-
cussed by Huang and colleagues [42], which 
others have termed ‘hormesis’ [14, 42, 69], but 
not (yet) by evidence of toxicity.

In clinical trials of saffron, with positive out-
comes for cognition in Alzheimer’s disease [70, 
71], premenstrual stress [72] and depression 
[73, 74], a daily dose of 30 mg was used over 
days and weeks. In a clinical trial of saffron in 
age-related macular degeneration (AMD), with 
strongly positive outcomes [18, 19], a daily 
dose of 20 mg was used, for over a year. In 
rodent experiments [13, 34], significant protec-
tion of retinal photoreceptors was reported 
with doses of 1 mg/kg/d, as an aqueous 
extract; Hosseinzadeh and colleagues [75] 
reported increases in sexual potency with 
doses of 80-320 mg/d; Pitsikas and colleagues 
[76] reported improvements in memory with 
doses of 30-60 mg/kg; and Premkumar and 
colleagues [77-80] reported protection from 
genotoxicity with doses of 20-100 mg/kg daily.

In the present study we chose a daily dose at 
the low end of the range established as effec-
tive by earlier work, for both PBM and saffron, 
and then increased the number of days of pre-
conditioning. This approach was chosen 
because it seemed possible that the actions of 
these therapies include the upregulation of 
slow-responding, but still unidentified protec-
tive systems, which take days to take effect.

Implications for mechanism

The day-by-day increase in the neuroprotective 
effectiveness of saffron and PBM evident in 
Figures 1-5 is a simple but novel observation, 
which gives some insight into the time course 
of the underlying mechanisms. The build-up of 
neuroprotection over 7-10 d suggests that saf-
fron and PBM slowly active a still unknown, 
endogenous protective mechanism. One possi-
bility is the activation of local tissue mecha-
nisms, such as the repair of mitochondria by 
PBM [42]; another is the activation of circulat-
ing immune-related cells, which migrate to 
sites of damage.

Saffron is the most strongly antioxidant-rich 
plant known [81], and might have a significant 
effect as a chemical antioxidant. Studies of the 
absorption of dietary saffron into the blood, 
where it is detected as crocetin [82, 83], sug-
gest that blood levels reach a peak ~ 4 h after 
oral administration of the precursor crocin, and 
then decline with a half-life of 6-7 h. Single daily 
dosing with saffron, as used in this study, 
seems therefore to generate a daily pulse of 
bioactive molecules in the blood. The slow 
build-up of the neuroprotective effect of saffron 
does not correlate with this daily rhythm, sup-
porting the view [13, 33, 34] that saffron does 
not act as a direct anti-oxidant.

Several previous studies have reported neuro-
protection using long-term daily doses of saf-
fron and PBM. In the light damage/SD rat 
model, data from Maccarone and colleagues 
[13] show a neuroprotective effect of saffron 
given over 6w; and in a human clinical trial [19] 
the neuroprotective effect of saffron persisted 
to 1 year, provided treatment continued. 
Significant effects of PBM have been reported 
in human studies using single doses [31, 43], 
but the use of PBM in several doses over two 
weeks has been reported to be effective in the 
treatment of AMD [16].
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Contrast with biphasic dose-response relation-
ships reported for PBM

The monotonic dose-response relationship 
observed here for PBM is distinct from ‘bipha-
sic’ relationships reported for PBM in a number 
of models of tissue degeneration (reviewed 
[42]). In this context, ‘biphasic’ refers to a trend 
for the effectiveness of conditioning with PBM 
first to increase and then to reduce, as the 
strength of irradiation is increased. Huang and 
colleagues cite examples, both in vitro and in 
vivo. The same biphasic relationship has been 
reported in studies of tissue protection caused 
by phytotoxins [29] and gamma rays [14]; these 
authors used the term ‘hormesis’ to describe 
the shift from beneficial effects at low doses to 
toxicity at higher doses.

It is a feature of the studies that reported a 
biphasic dose-response relationship for PBM, 
that dose was increased by giving multiple 
doses within a 24 h (usually 12 h) period. Our 
data suggest that, when the interval between 
doses is 1 d, and dose is increased by increas-
ing the number of once-a-day treatments, the 
dose-response relationship is monotonic.

Conclusions

The neuroprotective effects of dietary saffron 
and photobiomodulation, given in established 
daily doses, were assessed in a light damage 
model of photoreceptor degeneration, in the 
rat. The neuroprotective effects of both built up 
over 5-10 d of administration, suggesting that 
they activate endogenous protective mecha-
nisms, possibly the same mechanism. This 
time course of effect does not support the pos-
sibility that saffron, although highly anti-oxi-
dant, acts as an anti-oxidant. Possible mecha-
nisms are discussed, and are under 
investigation.
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